A factorial HMM aproach to robust isolated digit recognition in background music
نویسندگان
چکیده
This paper presents a novel solution to the problem of isolated digit recognition in background music. A Factorial Hidden Markov Model (FHMM) architecture is proposed to accurately model the simultaneous occurrence of two independent processes, such as an utterance of a digit and an excerpt of music. The FHMM is implemented with its equivalent HMM by extending Nadas’ MIXMAX algorithm to a mixture of Gaussians PDF. At around 0 dB SNR, the proposed system shows an average relative reduction in word error rate of 57% in the recognition of isolated digits in background music.
منابع مشابه
A Factorial HMM Approach to Robust Isolated Digit Recognition in Background Music
This paper presents a novel solution to the problem of isolated digit recognition in background music. A Factorial Hidden Markov Model (FHMM) architecture is proposed to accurately model the simultaneous occurrence of two independent processes, such as an utterance of a digit and an excerpt of music. The FHMM is implemented with its equivalent HMM by extending Nadas’ MIXMAX algorithm to a mixtu...
متن کاملRobust speech recognition via modeling spectral coefficients with HMM's with complex Gaussian components
Robust speech recognition via hidden Markov modeling of spectral vectors is studied in this paper. The hidden Markov model (HMM) mixture components are assumed complex Gaussian with zero mean, diagonal covariance, and with incorporating an unknown scalar gain term. The gain term is associated with each spectral vector and it models the varying energy of speech signals. It is estimated by applyi...
متن کاملMAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL
Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...
متن کاملModified Mfcc Methods Based on Kl- Transform and Power Law for Robust Speech Recognition
This paper presents robust feature extraction techniques, called Mel Power Karhunen Loeve Transform Coefficients (MPKC), Mel Power Coefficients (MPC) for an isolated digit recognition. This hybrid method involves Stevens’ Power Law of Hearing and Karhunen Loeve(KL) Transform to improve noise robustness. We have evaluated the proposed methods on a Hidden Markov Model (HMM) based isolated digit r...
متن کاملAlert correlation and prediction using data mining and HMM
Intrusion Detection Systems (IDSs) are security tools widely used in computer networks. While they seem to be promising technologies, they pose some serious drawbacks: When utilized in large and high traffic networks, IDSs generate high volumes of low-level alerts which are hardly manageable. Accordingly, there emerged a recent track of security research, focused on alert correlation, which ext...
متن کامل